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Abstract

Three-dimensional laminar forced convective flow and entropy generation in a 180-deg curved rectangular duct with longitud
equipped on the heated wall are investigated by numerical methods. The development of secondary vortices, temperature and lo
generation distributions as well as the overall entropy generation in whole flow fields, including the entrance and fully developed re
analyzed. The effects of rib size are particularly highlighted in the present paper. Calculations of cases with various rib sizes unde
Dean numbers and external heat fluxes are carried out to examine the influence of rib on the flow field and entropy generation. T
generated from frictional irreversibility and heat transfer irreversibility is investigated separately in detail. The results reveal that theition
of rib can effectively reduce the entropy generation from heat transfer irreversibility since the secondary vortices are augment
rib, through which the heat transfer performance is enhanced, in turn making the temperature gradient become smoother. Never
entropy generation due to frictional irreversibility is raised at the same time because larger fluid friction is resulted from the wider so
and the complex flows disturbed by ribs. Due to the opposite influences of rib on the entropy generations from irreversibilities, the
of the optimal trade-off is carried out based on the minimal entropy generation principle. The optimal rib size which induces the
entropy generation in the flow fields is found to be dependent on the external heat flux and Dean number. Even under some flow
the resultant entropy generation could not be reduced but becomes worse when ribs are added. These results provide worthwhile
for considerations of adding ribs on a curved duct and the determinations of rib sizes from view point of thermodynamic second la
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The study of heat transfer and flows through a curved d
is of fundamental importance for industrial applications s
as turbomachinery, refrigeration and air conditioning s
tems, heat exchangers, and the blade-to-blade passag
cooling system in modern gas turbines. The principal fl
feature in curved ducts is the presence of secondary
motion generated as a result of curvature effects and

* Tel.: +886 2 82093211; fax: +886 2 82091475.
E-mail address:thko@mail.lhu.edu.tw (T.H. Ko).
1290-0729/$ – see front matter 2005 Elsevier SAS. All rights reserved.
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trifugal force. The secondary vortices promote fluid mixin
and in turn enhance the heat transfer performance. How
they result in more serious pressure drop in the flow p
sage. During past several decades, the flow dynamics
heat transfer in curved ducts with various cross-sectio
shapes, including circular, rectangular and elliptic, have
ceived continuous attention [1–8]. Because of the prac
importance, many studies focus on the flows in curved d
with rectangular cross-sections. The flow field in a fully d
veloped laminar flow in a curved rectangular channel w
analyzed by Cheng et al. [3], in which the influence of
aspect ratio on the Dean vortices and secondary-flow
stability was emphasized. The flow structure in a hel
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Nomenclature

a width of the cross-sectional area of rectangular
curved duct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

b height of the cross-sectional area of rectangular
curved duct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Be Bejan number
de hydraulic diameter . . . . . . . . . . . . . . . . . . . . . . . m
De Dean number,= Re(de/rc)

1/2

h rib height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
h̄ average heat transfer coefficient in the

rectangular curved duct . . . . . . . . . W·m−2·K−1

k thermal conductivity of fluid . . . . W·m−1·K−1

ks thermal conductivity of steel . . . . W·m−1·K−1

Nu Nusselt number,= h̄de/k

P pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
q ′′ wall heat flux . . . . . . . . . . . . . . . . . . . . . . . W·m−2

q∗ non-dimensional heat flux
Q̇ heat transfer rate . . . . . . . . . . . . . . . . . . . . . . . . W
R gas constant . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

Re Reynolds number
rc radius of curvature . . . . . . . . . . . . . . . . . . . . . . . m
S′′′

P volumetric entropy generation rate due to
friction . . . . . . . . . . . . . . . . . . . . . . . . W·m−3·K−1

S′′′
T volumetric entropy generation rate due to heat

transfer . . . . . . . . . . . . . . . . . . . . . . . W·m−3·K−1

S′′′
gen total volumetric entropy generation

rate . . . . . . . . . . . . . . . . . . . . . . . . . . . W·m−3·K−1

S∗
P non-dimensional entropy generation rate due to

friction
S∗

T non-dimensional entropy generation rate due to
heat transfer

S∗
gen non-dimensional entropy generation rate

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T0 temperature at duct entrance . . . . . . . . . . . . . . K
V average velocity in duct . . . . . . . . . . . . . . m·s−1

µ molecular viscosity . . . . . . . . . . . . . kg·m−1·s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3
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rectangular duct and the effects of curvature and torsio
the flow were investigated by Bolinder [4]. In the study
Wang [5], the buoyancy-force-driven transition and its
fects on the heat transfer in a rotating curved rectang
channel were studied. Through the numerical investigat
on the fully developed laminar forced convection in curv
rectangular and elliptic ducts carried out by Silva et al.
a general correlation of Nusselt number and friction facto
a function of Dean number (De) and the cross-sectional a
pect ratio of the duct was proposed. The secondary flow
convective heat transfer in curved rectangular ducts with
ternal heating were investigated by Chandratilleke [7] us
experimental method, and Chandratilleke and Nursuby
[8] using both of numerical and experimental methods
their studies, the effects of Dean number and duct as
ratio on the heat transfer coefficient and flow fields were
alyzed. For enhancing the heat transfer performance, C
and Rizzo [9] added a fence on the heated wall of a 90-
turning rectangular curved duct. Through their experime
study, they found the added fence could effectively raise
heat transfer performance of the turbulent convection in
curved duct.

The primary concern of the heat exchanger desig
twofold: the effective heat transfer performance and the l
pressure drop. However, an embarrassing situation exi
the practical design work, i.e. a design parameter adjuste
enhance heat transfer performance inevitably accompa
an increase of pressure drop. The conflict situation c
lenges the design work. The optimal trade-off by selec
the most appropriate configuration and the best flow co
tions becomes critical and unavoidable. For determining
optimal design, the minimal entropy generation principle
been widely adopted to evaluate a thermal system [10
t

i

The entropy generation in a heat transfer process ma
resulted from heat transfer irreversibility or fluid friction
irreversibility. An adjustment of design parameters wo
cause opposing contributions to irreversibilities. The syst
atic methodology of computing entropy generation throu
heat and fluid flow in several heat exchangers has been
scribed by Bejan [10,11]. Based on the minimal entropy g
eration principle, optimal designs of thermal systems h
been widely proposed from the viewpoint of thermodynam
Second Law [10–17]. Several examples are as follows:
optimization work for convective heat transfer through
duct with constant heat flux by Nag and Kumar [12]; the ir
versibility analysis in various duct geometries with const
wall heat flux by Sahin [13,14]; the optimal analysis of
geometry in an electronic cooling system based on the e
goeconomic by Shuja [15]; the optimal analysis of rectan
lar channels with square pin-fins by Sara et al. [16]; and
optimizing work for the laminar forced convection in helic
coils by Ko and Ting [17]. In view of that most of the prev
ous investigations on convective flows in curved rectang
ducts are restricted to the analysis based on thermodyn
First Law, a recent work of Ko and Ting [18] investigat
the entropy generation due to laminar forced convectio
a curved rectangular duct with constant wall heat flux.
the study, the influence of external heat flux, Dean num
and cross-sectional aspect ratio on the entropy gener
were emphasized, through which the optimal Dean num
and aspect ratio according to relevant design paramete
induce the minimal entropy generation and least irrevers
ity were reported. According to a recent research of Ca
and Rizzo [9], the fence mounted on the heated wall o
rectangular curved duct could effectively raise the heat tr
fer performance. However, since their study was restric
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to the thermodynamic First Law, the current study is m
vated. The present paper intends to investigate the lam
forced convection and entropy generation in a curved
tangular duct with longitudinal ribs mounted on the hea
wall with numerical methods. The effects of the rib on t
flow features and entropy generation are the principal c
cerns. Through the entropy generation analysis and min
entropy generation principle, the optimal rib size in the r
tangular curved duct with different flow conditions will b
discussed in the paper.

2. Physical model

Fig. 1 shows the semi-circular curved rectangular duct
alyzed in the present paper. The curved duct represents a
exchanger passage. Heat is transferred through the oute
of the duct, and is transported by the cooling air from d
entrance. A steel rib with square cross-section is mou
at the midway of the heated wall as shown in Fig. 1 for
hancing the heat transfer performance. The cross-sectio
the curved duct is a square with side lengtha. The Reynolds
number (Re), Nusselt number (Nu) and Dean number (De)
for the current problem are defined as follows:

Re= ρV de/µ (1)

Nu= h̄de/k (2)

and

De= Re(de/rc)
1/2 (3)

whereV and h̄ are the average velocity and average h
transfer coefficient of the flow in the curved duct;de is the
characteristic length defined as 4A/PW, whereA andPW are
the area and wetted perimeter of the square cross-se
respectively;rc is the curvature radius of the curved du
The rib height ish; the density and thermal conductivity

Fig. 1. Geometry and coordinate system of a curved rectangular du
r

t
ll

f

,

the steel rib are 7900 kg·m−3 and 48 W·m−1·K−1, respec-
tively. Air has been selected as working fluid in the pres
study. Since temperature change in the flow field is v
small, the thermophysical properties of molecular visco
(µ) and thermal conductivity (k) are assumed to be co
stant as 1.846× 10−5 kg·m−1·s−1 and 0.0263 W·m−1·K−1,
respectively. The buoyancy force due to gravity has been
cluded in considerations. The gravity direction is indica
in Fig. 1. The fluid density at duct entrance according to
fluid temperatureT0 is 1.161 kg·m−3. The non-dimensiona
wall heat flux,q∗, is defined according to the external w
heat flux,q ′′, as

q∗ = q ′′de/kT0 (4)

In a baseline case of the present study,q∗ andDe are fixed
as 0.112 and 2000, respectively. Except the baseline
q∗ is varied as 0.056, 0.224 and 0.448, whileDe is varied as
500, 1000 and 3000, to investigate the influence of exte
heat flux and Dean number on flow fields. For various fl
conditions, the calculated cases cover the curved ducts
and without ribs. In the cases with rib, the rib size,h/de, is
varied as 1/10, 1/7 and 1/5 to investigate its influences.

3. Mathematical model and numerical method

3.1. Mathematical model

The present problem is three-dimensional, laminar
steady. The conjugated heat transfer phenomenon inclu
the convection in fluid flow and the conduction in steel
are considered simultaneously in the present analysis
fluid flow, the relevant equations are continuity equati
Navier–Stokes equation, energy equation and equatio
state. For steel rib, the heat conduction equation is con
ered. The equations in tensor form are as follows.

For fluid flows:

∂(ρUi)

∂xi

= 0 (5)

∂

∂xj

(ρUjUi)

= − ∂P

∂xi

+ ∂

∂xj

[
µ

(
∂Ui

∂xj

+ ∂Uj

∂xi

)
− 2

3
µ

∂Uk

∂xk

δij

]
+ ρgi

(6)

∂

∂xj

(
ρUjCpT − k

∂T

∂xj

)

= Uj

∂P

∂xj

+
[
µ

(
∂Ui

∂xj

+ ∂Uj

∂xi

)
− 2

3
µ

∂Uk

∂xk

δij

]
∂Ui

∂xj

(7)

P = ρRT (8)

For steel rib:

∂

∂x

(
ks

∂T

∂x

)
= 0 (9)
j j
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The boundary conditions are specified as follows. T
uniform axial velocity is set at duct entrance. At outlet,
diffusion flux in the direction perpendicular to the out
plane for all velocity components and temperature are s
zero. Non-slip conditions are specified on the duct wall
rib wall. As shown in Fig. 1, the constant heat flux is sp
ified only on the outer wall, whereas on other walls of
curved duct adiabatic condition is applied. At the interfa
between fluid and rib surface, the energy balance of con
tion in fluid flow and conduction in steel rib is applied
couple the conjugated heat transfer process.

After the velocity and temperature distributions of t
flow field are solved by using Eqs. (5)–(9) and the accom
nied boundary conditions, the volumetric entropy genera
due to the heat transfer irreversibility (S′′′

T ) and the fluid fric-
tional irreversibility (S′′′

P ) can be calculated by the followin
equations [11]:

S′′′
T = k (|∇T |)2 (10)
T 2
S′′′
P = µ

T

(
∂Ui

∂xj

+ ∂Uj

∂xi

)
∂Ui

∂xj

(11)

The total volumetric entropy generation in the flow field c
be obtained by

S′′′
gen= S′′′

T + S′′′
P (12)

Bejan number (Be) proposed by Paoletti et al. [19], whic
describes the contribution of heat transfer entropy on ove
entropy generation, is defined as

Be= S′′′
T /S′′′

gen (13)

Obviously, theBeranges from 0 to 1;Be= 0 andBe= 1 are
two limiting cases representing the irreversibility is dom
nated by fluid friction and heat transfer, respectively. Wh
Be= 0.5, the entropy generation rates from heat transfer
fluid friction are equal.
Fig. 2. Flow analysis: secondary flow motions on cross-sectional planes at A–A′, B–B′ and C–C′. (a) No rib; (b)h/de = 1/10; (c) h/de = 1/5. On each
cross-sectional plane, outer wall is at right-hand side, inner wall is at left-hand side.
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Fig. 3. Distributions of secondary kinetic energy coefficient,Csec, on cross-sectional planes at A–A′, B–B′ and C–C′. (a) No rib; (b) h/de = 1/10;
(c) h/de = 1/5. On each cross-sectional plane, outer wall is at right-hand side, inner wall is at left-hand side.
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3.2. Numerical method

All the above-mentioned equations accompanied
boundary conditions are discretized using finite volume
mulation. In the equations, the convective terms are mod
by the secondary-order upwind scheme while the diffus
terms are modeled by the central difference scheme.
numerical solution procedure adopts the well-known se
implicit SIMPLE algorithm, which was developed by Lau
der and Spalding [20]. The detailed numerical procedur
given in the book of Patankar [21]. The convergent cr
rion is set as the relative residual of all variables, includ
the mass, all velocity components and temperature less
10−4. The results have been compared with those from
calculation with the convergent criterion set as 10−6. The
results are almost the same. A commercial CFD softw
CFD RC (ESI US R&D, Inc.) is used for the numerical s
lutions.
4. Results and discussion

The accuracy of numerical solutions has been inve
gated through the comparison of numerical results with
perimental data in the curved duct with various aspect ra
in the previous study of Ko and Ting [18]. From the comp
isons, the accuracy of numerical results has been veri
The grid independent tests were also carried out in the s
of Ko and Ting [18]. For higher resolution of the curre
problem, the grid number is raised to 202 500 for ducts w
various rib sizes. The grid layout is 45× 45 on the rectan
gular cross-sectional plane, and 100 grids along the a
direction.

In the following, the flow fields, including the seconda
vortices, distributions of velocity, temperature, and entr
generation, under a baseline flow condition,q∗ = 0.112 and
De = 2000, is first discussed, and then the effectsq∗ and
De on the entropy generation is presented. From the in



T.H. Ko / International Journal of Thermal Sciences 45 (2006) 390–404 395

al
Fig. 4. Flow analysis: velocity contours on cross-sectional planes at A–A′, B–B′ and C–C′. (a) No rib; (b)h/de = 1/10; (c)h/de = 1/5. On each cross-section
plane, outer wall is at right-hand side, inner wall is at left-hand side.
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tigations of influences of ribs, the optimal rib size for t
curved duct flow under various external heat flux andDe is
discussed.

4.1. Analysis of flow fields withq∗ = 0.112and De= 2000

The flow fields with flow conditions asq∗ = 0.112 and
De= 2000 will be discussed first. The case without rib a
the ribbed cases withh/de = 1/10 and 1/5 are selected a
baseline cases for comparisons. Figs. 2(a)–(c) show the
ondary vortices on the cross-sectional plane A–A′, B–B′ and
C–C′ for the case without rib, and the ribbed cases w
h/de = 1/10 and 1/5, respectively. In the figures, the lef
hand side of the cross-sectional plane is the inner wa
the curved duct, and the right side is the outer wall of
curved duct, which is exposed to the external heat flux.
the case without rib, as shown in Fig. 2(a), it can be foun
pair of counter-rotating vortices distribute on the two cor
-

regions near the inner wall on A–A′ plane. As the flow devel
ops to B–B′ plane, the pair of vortices remain at nearly t
same location. Meanwhile, two additional vortices with o
posite rotating direction appear in the corner region near
outer wall. Further to C–C′ plane, the pair of vortices nea
the outer wall splits into two vortex pairs, and a vortex s
tem with totally three pairs of vortices form on the plane. T
complicated development of the secondary vortices is th
sult of combined effects of duct curvature and the centrifu
forces. Figs. 2(b) and 2(c) show the secondary vortice
the curved duct with rib ofh/de = 1/10 and 1/5, respec-
tively. On all the three cross-sectional planes, it can be s
that the influence of rib on the vortices at the corners nea
ner wall is relatively minor, whereas the principal influenc
of ribs on the secondary vortices appear in the region
the outer wall. In both ribbed cases, a new pair of coun
rotating vortices forms near the rib corner on A–A′ plane.
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Fig. 5. Flow analysis: temperature contours on cross-sectional planes at A–A′, B–B′ and C–C′. (a) No rib; (b)h/de = 1/10; (c) h/de = 1/5. On each
cross-sectional plane, outer wall is at right-hand side, inner wall is at left-hand side.
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As the flow develops to B–B′ plane, the new vortex pa
becomes stronger and moves their position slightly a
from the rib corners in the case with rib ofh/de = 1/10.
Nonetheless, the principal vortex pattern remains uncha
near the rib corners in the case. As the rib size increas
h/de = 1/5, the vortex system near the rib becomes v
complicated. On B–B′ plane, the vortex pair appearing ne
the rib corner on the A–A′ plane still distributes there. Bu
between the vortex couple, a new pair of vortices deve
and forms in the left region adjacent to the rib. As the fl
develops to C–C′ plane, the three pairs of vortices becom
more distinguishable. The vortex system on the three cr
sectional planes for the three cases with or without ribs
be seen very different, which indicates the rib has sign
cant influences on the secondary flow motion in the cur
duct. Such influences will be beneficial to the enhancem
of heat transfer performance but detrimental to the reduc
of fluid friction in flow fields. Figs. 3(a)–(c) show the distr
butions of secondary kinetic energy coefficient,Csec, which
is defined as

Csec=
(
V 2

1 + W2
1

)1/2
/V (14)
whereV1 andW1 are two velocity components on the corr
sponding cross-sectional planes. From the figures, the la
Csec concentrates in a very narrow region near the top
bottom walls for all of the three cases. Although the va
of the largest value ofCsec for the three cases is simila
which is around 0.29–0.3, the area coverage with largerCsec

becomes wider as the rib added and the rib size incre
Accordingly, the addition of rib can be seen to augment
secondary vortex motion. Figs. 4(a)–(c) show the velo
contours on the three cross-sectional planes for the t
cases. For the case without rib, it can be seen clearly tha
high velocity zone transfers from the inner side gradually
ward the outer side as the flow develops from A–A′ plane to
C–C′ plane. Such change is resulted from the influence
centrifugal force. However, the trend is changed due to
rib. From the ribbed cases, as shown in Figs. 4(b) and 4
the transfer of the high velocity zone is impeded by the
which results that the high velocity zone distributes near
central zone instead of outer zone of the cross-sectional
plane as the flow develops toward downstream. In addit
the impediment effect of the rib can be seen to increas
the rib size increases.
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Fig. 6. The contours of volumetric entropy generation,S′′′
P , on cross-sectional planes at A–A′, B–B′ and C–C′. (a) No rib; (b)h/de = 1/10; (c)h/de = 1/5.

On each cross-sectional plane, outer wall is at right-hand side, inner wall is at left-hand side.
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Figs. 5(a)–(c) show the non-dimensional tempera
contours on the three cross-sectional planes for the t
cases, respectively. The non-dimensional temperature,T ∗,
is defined as

T ∗ = (T − T0)/T0 (15)

Obviously, the principal temperature rise occurs in a v
narrow region close to the outer wall, which is exposed to
external heat flux. The largestT ∗ is about 0.009 occurring in
the case without rib. Besides, the temperature gradient
be found more serious in the case without rib. In the regi
near the outer wall, the higher-temperature zones show
ferent shapes on various cross-sectional planes for diffe
cases. However, it is interesting to find that the shapes o
higher-temperature zones are coincident with the cont
of relatively lower velocity near the outer wall as shown
Fig. 4. The results indicate the heat transfer performanc
relatively worse in the lower-velocity region near the hea
wall; therefore, the local temperature is higher. In the rib
cases, it can be seen the temperature distribution within
rib is very uniform, which could be understood because
the large thermal conductivity of the rib. In addition, the te
perature within the rib decreases as the rib size increa
t

.

These results reveal that the rib can effectively enhance
heat transfer performance in the curved duct, and in
smooth the temperature gradient in flow fields.

4.2. Analysis of entropy generation under flow condition
q∗ = 0.112and De= 2000

The distributions of volumetric entropy generation due
frictional irreversibility and heat transfer irreversibility fo
the case without rib and the ribbed cases withh/de = 1/10
and 1/5 under flow condition ofq∗ = 0.112 andDe= 2000
are shown in Figs. 6 and 7, respectively. From Figs. 6(a)–
which show the distributions ofS′′′

P on the three cross
sectional planes, respectively, the significant entropy ge
ation due to fluid frictional irreversibility is found to conce
trate in a very thin layer adjacent to the curved duct wall
all of the three cases, the values ofS′′′

P near the inner wal
are relatively smaller than those near the other three s
Although the largestS′′′

P occurs in the regions closely adj
cent to the outer wall in the case without rib, the distribut
area of the layer with significant values ofS′′′

P can be seen to
increase with the rib size. This is resulted from the more
rious fluid friction near the wider rib-wall area in the larg
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Fig. 7. The contours of volumetric entropy generation,S′′′
T , on cross-sectional planes at A–A′, B–B′ and C–C′. (a) No rib; (b)h/de = 1/10; (c)h/de = 1/5.

On each cross-sectional plane, outer wall is at right-hand side, inner wall is at left-hand side.
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rib case. The distributions ofS′′′
T on the three cross-section

planes for the three cases are shown in Figs. 7(a)–(c), re
tively. The distribution of significantS′′′

T only occurs in the
region close to the outer wall, whereasS′′′

T is almost zero in
other regions. The largestS′′′

T occurs in the case without rib
Both of the magnitude and distributing zone of signific
S′′′

T can be seen to be smaller in the ribbed cases. As th
size increases,S′′′

T decreases obviously. These results ve
again that the rib can effectively enhance the heat tran
performance, reduce the temperature gradient, and ac
ingly decrease the entropy generation due to heat transf
reversibility. The contours ofBeon the three cross-section
planes for the three cases are shown in Fig. 8. From the
ure, it can be found that the values ofBenear the outer wal
are larger than 0.5, which indicatesS′′′

T is larger thanS′′′
P in

the region where the external heat flux is imposed. The
of fluid flow region with largerBe can be seen to becom
smaller in the two ribbed cases. Besides, as rib size incre
from h/de = 1/10 to 1/5, the values ofBecan be seen to be
come smaller in most region of the flow field, which reve
thatS′′′

T decreases as the rib size increases. The distribu
of S′′′

genon the three cross-sectional planes for the three c
is shown in Fig. 9, from which it can be seen that the sign
-

-
-

s

s

cantS′′′
genconcentrates only in the thin layer on the perime

of the duct wall for all the three cases. The value ofS′′′
gen is

largest in the region near the outer wall, whereasS′′′
gen is very

minor in the region near the inner wall.

4.3. Effects of rib size on entropy generation and analys
of optimal rib size

For evaluation of the entropy generation in flow fields,
non-dimensional entropy generation rate,S∗

P, S∗
T andS∗

gen, in
the whole curved duct are defined by

S∗
P =

∫
V

S′′′
P dV

Q̇/T0
(16)

S∗
T =

∫
V

S′′′
T dV

Q̇/T0
(17)

and

S∗
gen=

∫
V

S′′′
gendV

Q̇/T0
(18)

whereV is the volume of the whole computational doma
including the fluid and the steel rib;̇Q is the heat flow rate
into the flow field. The comparison of entropy generat
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e,
Fig. 8. The contours ofBe on cross-sectional planes at A–A′, B–B′ and C–C′. (a) No rib; (b)h/de = 1/10; (c)h/de = 1/5. On each cross-sectional plan
outer wall is at right-hand side, inner wall is at left-hand side.
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ring
for the cases without rib and the ribbed cases with dif
ent rib sizes, includingh/de = 1/10,1/7 and 1/5, is shown
in Fig. 10. A clear trend can be found from the figure t
S∗

P in all ribbed cases is larger than that in the case with
rib, and its magnitude increases as the rib size increases
results can be understood as a consequence that more
friction is induced by the wider rib wall in the larger rib cas
The figure also indicates that the rib can cause obvious
duction ofS∗

T. As the rib size becomes larger,S∗
T decreases

more, which reveal again that the effect of the rib on h
transfer performance is substantial. For the present anal
case withq∗ = 0.112 andDe = 2000, S∗

P is much larger
thanS∗

T for all the cases, indicating the entropy generat
under the current flow condition is dominated by the fl
frictional irreversibility. It is noted that Fig. 10 also exhibi
the opposite influence of rib size onS∗

P andS∗
T. The conflict

trend manifests that the rib size could be optimized du
a trade-off between the irreversibility from heat transfer a
fluid friction so that the minimal resultant entropy generat
could be obtained. From Fig. 11, which depicts the value
S∗

T/S∗
gen for all the different cases, it can be seen that the

ues ofS∗
T/S∗

gen for all cases is less than 0.5. In addition, t
value ofS∗

T/S∗
gen decreases as the rib size increases, wh
e
d

points out that the entropy generation due to fluid frictio
irreversibility in the whole flow field becomes increasing
more important than that from heat transfer irreversibility
the rib size increases. The resultant entropy generationS∗

gen
for the calculated cases is depicted in Fig. 12. It can be fo
that theS∗

gen can be effectively reduced by adding ribs w
all sizes considered in the present study. Nonetheless, am
the analyzed ribbed cases, the rib size ofh/de = 1/7 can in-
duce the minimalS∗

gen. Accordingly, the rib size is conclude
as the optimal option for the curved duct under the flow c
dition with q∗ = 0.112 andDe = 2000. By equipped the
rib of such size, the best exergy utilization with least ir
versibility could be obtained in the convective flow of t
curved duct.

4.4. Effects of Dean number and external heat flux

For further investigating the entropy generation and
timal rib size under different flow conditions, several ca
with variousq∗ andDe are calculated. Figs. 13(a) and 13(
show the values ofS∗

P and S∗
T for q∗ = 0.112 cases with

De = 500, 1000, 2000 and 3000, respectively. Compa
the two figures, it can be seen that the increase ofDe makes
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Fig. 9. The contours of volumetric entropy generation,S′′′
gen, on cross-sectional planes at A–A′, B–B′ and C–C′. (a) No rib; (b)h/de = 1/10; (c)h/de = 1/5.

On each cross-sectional plane, outer wall is at right-hand side, inner wall is at left-hand side.
heat
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-
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ed
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in-
the
Fig. 10. The effects of rib height on entropy generation induced from
transfer (S∗

T) and fluid friction (S∗
P).

S∗
P increase andS∗

T decrease. Such results can be unders
that the increase ofDewill cause the more serious fluid fric
tion and the better heat transfer performance. For the s
reasons,S∗

P increases andS∗
T decreases as the rib is add
Fig. 11. The effects of rib height onS∗
T/S∗

gen.

and the rib size becomes larger. Fig. 14 shows the value
S∗

T/S∗
gen for q∗ = 0.112 cases withDe = 500, 1000, 2000

and 3000, respectively. It can be seen from the figure
the value ofS∗

T/S∗
gen gradually decreases as the rib size

creases for allDe cases, which indicates the trend that
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Fig. 12. The effects of rib height on entropy generation,S∗
gen.

rib can enhance the heat transfer performance and in tu
reduce heat transfer irreversibility is not influenced byDe.
As the rib size increases, the affects can be found to bec
more significant. The figure also exhibits that the value
S∗

T/S∗
genbecomes larger asDebecomes smaller. In all ribbe

and non-ribbed cases withDe= 500 and 1000,S∗
T/S∗

gen is
much larger than 0.5, whereasS∗

T/S∗
gen is less than 0.5 fo

all cases asDe increases to 2000. AsDe increases to 3000
the values ofS∗

T/S∗
gen in all cases become much smal

than 0.5. This reveals the fact that the entropy genera
in flow fields is more dominant by heat transfer irreversib
ity in smallerDe cases, and is more dominant by friction
irreversibility whenDe is larger. The increase ofS∗

P and
decrease ofS∗

T caused by the increase ofDe accordingly in-
duces the decrease ofS∗

T/S∗
gen. The effects ofDeonS∗

gen are
shown in Fig. 15. InDe= 2000 cases, which has been d
cussed previously, the magnitude ofS∗

gen can be reduced b
adding the rib in the curved duct, and the optimal rib siz
h/de = 1/7. The similarly favorable effect of the added r
can also be found inDe= 500 and 1000 cases. As the rib
added, the value ofS∗

gen decreases monotonically as the
size increases, which results thath/de = 1/5 is the optimal
rib size for theDe= 500 and 1000 cases. However, wh
De increases to 3000, the opposite and unexpected re
are found from the figure. InDe = 3000 cases, the adde
rib does not reduce the value ofS∗

gen but makes the valu
increase. As the rib size becomes larger, the entropy ge
ation becomes more serious. These results point out tha
rib should not be added in the curved duct from the v
point of minimal entropy principle whenDe is larger. The
reasons to cause such results can be explained as fol
Although the addition of rib can reduceS∗

T through the en-
hancement of heat transfer performance, but it also raiseS∗

P
simultaneously because the added rib makes fluid fric
become more serious in flow fields. Since the entropy g
eration is dominated by frictional irreversibility in the larg
De (De= 3000) cases, as been discussed previously, th
crease ofS∗

P overwhelms the decrease ofS∗
T; therefore the
s

-

.

(a)

(b)

Fig. 13. (a) Effects ofDe on S∗
P (q∗ = 0.112). (b) Effects ofDe on S∗

T
(q∗ = 0.112).

addition of ribs induces the unexpected increase of re
tantS∗

gen. As the rib size increases, the unexpected incre
of resultantS∗

gen becomes larger. On the contrary, the e
tropy generation is dominated by heat transfer irreversib
in the smallerDe cases (De= 500 and 1000), the additio
of rib can effectively reduceS∗

T. Although theS∗
P increases

due to the added rib at the same time, the resultant ent
generationS∗

gen still decreases since the dominant entro
generation isS∗

T for the smallerDe cases. The affects als
become more significant as rib size increases. Accordin
in De = 500 and 1000 casesS∗

gen can be reduced by addin
ribs of all sizes, and the optimal rib size ish/de = 1/5, which
is the largest rib size considered in present study. As for



402 T.H. Ko / International Journal of Thermal Sciences 45 (2006) 390–404

nal
i.e.
site
-
the

y.
igs.

vely.

8,
the

-
fer

ure
ent
or.
-
ue
rs

-
x
s
omes
,

Fig. 14. Effects ofDe onS∗
T/S∗

gen (q∗ = 0.112).

Fig. 15. Effects ofDe onS∗
gen (De= 2000).

De = 2000 cases, the entropy generation due to frictio
and heat transfer irreversibility is relatively comparable,
no one is dominant in flow fields. Therefore, the oppo
influence of added rib onS∗

P andS∗
T makes the choice of op

timal trade-off of the rib size become necessary to obtain
minimalS∗

gen. The details have been discussed previousl
The effects of the external heat flux are shown in F

16–17. In the calculated cases,De is fixed as 2000, and
q∗ is varied as 0.056, 0.112, 0.224 and 0.448, respecti
Figs. 16(a) and 16(b) show the values ofS∗

P and S∗
T for

De= 2000 cases withq∗ = 0.056, 0.112, 0.224 and 0.44
respectively. From the two figures, it can be seen that
increase ofq∗ makesS∗

P decrease andS∗
T increase. The in

crease ofS∗
T is resulted from the more serious heat trans
(a)

(b)

Fig. 16. (a) Effects ofq∗ on S∗
P (De = 2000). (b) Effects ofq∗ on S∗

T
(De= 2000).

irreversibility in largerq∗ cases. Because the temperat
raise is limited for the heat flux considered in the pres
study, the influence of heat flux on velocity fields is min
Therefore,S′′′

P , which is mainly related with the velocity gra
dient, is not significantly affected by heat flux. However, d
to the normalization ofQ̇/T0 and temperature term appea
in the dominator of the definition ofS∗

P (see Eq. (16)),S∗
P is

induced to become larger in the smallerq∗ cases. The ef
fects of rib onS∗

P andS∗
T remain the same for all heat flu

cases, i.e. the added rib causesS∗
P to increase whilst cause

S∗
T to decrease. The change increases as the rib size bec

larger. Fig. 17 shows the values ofS∗
T/S∗

gen for these cases
from which it can be seen thatS∗

T/S∗
gen increases asq∗ in-
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Fig. 17. Effects ofq∗ onS∗
T/S∗

gen (De= 2000).

Fig. 18. Effects ofq∗ onS∗
gen (De= 2000).

creases. This is the natural result due to the largerS∗
T caused

by the largerq∗. In largerq∗ cases, the entropy generati
is more dominant by heat transfer irreversibility. It can a
be seen from the figure that the values ofS∗

T/S∗
gen decrease

monotonically as the rib size increases in allq∗ cases, which
indicates again the larger rib is helpful for the better h
transfer performance and the reduction ofS∗

T. The resultant
entropy generationS∗

gen for the cases is shown in Fig. 1
In the cases withq∗ = 0.112, the addition of rib with al
sizes can reduce the value ofS∗

gen and the optimal rib size
to induce minimalS∗

gen is h/de = 1/7 as pointed out pre
viously. As for q∗ decreases to 0.056, the addition of
with all sizes cannot reduceS∗

gen but raises its value sinc
the entropy generation is dominated by the frictional ir
versibility in the low heat flux cases. Accordingly, the r
should not be added in the cases. As the external heat
increases toq∗ = 0.224 and 0.448, the major entropy ge
eration comes from the heat transfer irreversibility. It c
be seen that the addition of rib can cause the reductio
the value ofS∗

gen. Besides, as rib size increases,S∗
gen de-

creases more. Therefore, the minimalS∗
gen is obtained in the

h/de = 1/5 case, which is the largest rib size in the pres
study.

5. Conclusions

Three-dimensional laminar forced convective flow a
entropy generation in a 180-deg curved rectangular duct
longitudinal ribs equipped on the heated wall have been
vestigated by numerical methods. The effects of rib s
under different flow conditions with various Dean numb
and external flux are particularly highlighted. The princip
conclusions are as follows:

(1) The major entropy generation concentrates in the re
adjacent to the solid walls since the velocity and te
perature gradients are steepest there. Near the duct
wall, where the external heat flux is imposed, the
tropy generation is largest. The entropy generation n
the inner duct walls is relatively mild.

(2) The addition of ribs can augment the secondary
tex motion in the curved duct, through which the h
transfer performance is enhanced, and therefore,
temperature gradient in flow fields becomes mild
In turn, the entropy generation from the heat tra
fer irreversibility is effectively reduced. Nonetheles
since the flow is disturbed significantly and the so
walls become wider in the fluid flow due to the add
ribs, more serious fluid friction is resulted. As a co
sequence, the entropy generation from fictional ir
versibility is raised by the ribs. The opposite infl
ence on the entropy generation from irreversibilit
makes the optimal trade-off analysis become ne
sary for obtaining the minimal resultant entropy gene
tion.

(3) For cases with smaller Dean number and larger
flux, the entropy generation in flow fields is dominat
by heat transfer irreversibility. Therefore, the additi
of rib can reduce the resultant entropy generation ef
tively since the reduction of the entropy generation fr
heat transfer irreversibility overwhelms the increase
the entropy generation from frictional irreversibility du
to the rib. On the contrary, since the entropy gene
tion is dominated by frictional irreversibility in case
with larger Dean number and smaller heat flux, the
dition of the rib cannot reduce the resultant entro
generation but raises its value. Accordingly, the
should not be added in curved duct in these ca
For the cases with medium Dean number and ex
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lent

ere,
nal heat flux, the decrease of entropy generation f
heat transfer due to the rib competes with the sim
taneous increase of entropy generation from frictio
irreversibility, which makes the optimal rib size exi
The optimal rib size should be adopted so that the
exergy utilization can be achieved in the thermal syst
These results given in the present paper provide wo
while information for considerations of adding ribs on
curved duct from view point of thermodynamic seco
law.
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